THE SPECTRAL THEOREM

Let A be an n X n symmetric real matrix. An amazing fact is that we can write A as
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with o7, ¥, ..., ¥, orthonormal vectors.

Here is how we compute! the A’s and the @’s. The fact that this method works involves what
seems to be some amazing pieces of good fortune.

Step 1 Compute the characteristic polynomial det(A — kId).

Factor this polynomial as (A; — k)(A2 — k) - - - (A, — k). The Fundamental Theorem of Algebra?
promises us that such a factorization is possible if we use complex numbers. However, it turns out
in our case that life is much better than this:

Lucky Fact 1: All the roots of f are real.
Step 2 For each eigenvalue A, compute an orthonormal basis for Ker(A — AId).
Putting all these bases together gives us a list of vectors: o7, s, ....

Lucky Fact 2: The geometric multiplicity of A\, meaning the dimension of this kernel, is equal
to the number of times A occurs as a root of f.

Thus, the total number of vectors in our list is equal to the number of roots of f, which is n.
Lucky Fact 3: These vectors form an orthonormal basis of R".

In the rest of this note, we will explain why we got so lucky.

A KEY FACT

We will use the following key fact twice below:

Key Fact: Suppose that & and ¥ are eigenvectors of A, with

Suppose that A # p. Then @ and ¢ are orthogonal.
To see this, we compute @’ A7 in two ways. We have
il AT = @t (\0) = Mal o
IThis is how to do the computation by hand. MATLAB uses a rather more sophisticated approach.

2The fundamental theorem of algebra is too hard for this course. The easiest exposition I know is at
http://www.math.binghamton.edu/loya/papers/LoyaFTA.pdf.



But, also, al Av

(17T )T = (77 A@)T, where we have replaced AT by A because A is symmetric.
And (_’TAu) T

(0T pa)" = p(@T@)" = p(a’'v). Putting it all together,
NalT = pal'v.
Since A # p, we get 4! ¥ = 0. In other words, the dot product @ - ¥ is 0 or, in still other words, @

and ¥ are orthogonal.

We now start explaining the Lucky Facts.

Lucky Fact 1

Suppose that f had a complex root, A = a + bi. Let the corresponding eigenvector be & + i/,
with « and y each real vectors. So

A(Z +iy) = (a + bi)(Z + 7).
Taking complex conjugates of everything, we also have

A(Z — iy) = (a — bi) (& — 1Y).
So & — 4% is also an eigenvector, with eigenvalue a — bi.

Now, if A\ is complex, then b # 0, and a + bi # a — bi. We can now use the Key Fact, with
=2+ 1y and ¥ = & — ig. (You probably expected us to use the Key Fact for real vectors, but
there is nothing about our argument that needed the entries to be real.)

So we deduce that @ - ¥ = 0. Plugging in the formulas for @ and @, that (¥ + i¥) - (¥ — i) = 0.

But (F+i) - (F—if) =F-F—if-§+if-Z+§-§=7-T+§-§= [T+ 7"
There is no way this is zero. (Remember that & and 3 have real entries.) More precisely, the only
way it could be zero is if ¥ = ¢ = 0, but then & + ¢/ is 0 and is not an example of a nontrivial
eigenvector.

We started out supposing that f has a complex root, and reached the absurd conclusion that
|Z|2 + |7]> = 0. The resolution is that, in fact, f doesn’t have any complex roots, and all its roots
are real. (Here we are using the Fundamental Theorem of Algebra to know that there are n roots
total — real and complex.) Lucky Fact 1 explained!

Lucky Facr 2
Let A be a root of f(k), so det(A — AId) = 0. Let r be the geometric multiplicity of A\, meaning
that there is an r dimensional space of solutions to the equation AY = A7 .

Let ¢1, 5, ..., ¥, be an orthonormal basis for the space of solutions to A7 = A\J. Find additional
vectors Up4y1, ..., Uy SO that o1, ¥o, ..., Up, Upt1, -..Uy is an orthonormal basis for R™. For
r+1 <4 < n, we can write

n
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for some coefficients c;;. We can organize these equations into a matrix. For concreteness, we take
r=2and n=>5.

A
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[ T T Ci1 Cap €43 Caa Cap [ T O
C51 €52 C53 C54 Cb5
You may recognize this argument from the November 13 notes.
A
[ R B A
Let S=|v1 vy U3 Uy Us]. So SAS™!' = c31 C32 €33 C34 C35
|

| C41 €42 €43 C44  C45
Cs1 C52 C53 Cs4 Csh

But @1, ¥, ..., U, is an orthonormal basis, so S is orthogonal and S~ = ST. So we have
A
A
T
STAS = |c31 c32 33 3 C3p

C41 C42 C43 C44 C45
C51 C52 Cs53 C54 Css

Notice that (STAS)T = STATS = ST AS, so the above matrix is symmetric. In particular, that
lower left block is entirely zero and we have

A
S™1AS =

C

for some symmetric (n — r) X (n —r) matrix C. As in the November 13 notes, we see that

A A—k

A A—k
det(A — k - 1d,) = det —k-1d, | = det

C’ C—k-1d,_,

=(A—k) det(C — k-1dy_,).

Our goal is to show that A — k divides det(A — k - Id,,) exactly r times. So we want to know
that A — k does not divide det(C' — kId,,—,). In other words, we want to know that A is not an
eigenvalue of C.

Suppose, to the contrary that C't = A@. Then
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) is another A eigenvector for A, which should have been listed when we found the v;.

So (
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Lucky Fact 3

We need to explain two things: Why the ¥; are orthonormal, and why they are a basis.

If ¥; and ¥; both come from the same eigenvalue A, then ;- ¥; = 0 because we chose an orthonor-
mal basis for the A-eigenspace. Also, the @; all have length 1 because we chose an orthonormal
basis in this place.

If ¥; and ¥; come from different eigenvalues, then the Key Fact tells us that ¢; and v are
perpendicular. So we also have perpendicularity between these vectors.

Since the ¥; are orthonormal, they are linearly independent. From Lucky Fact 2, the number of
¥; coming from each A is the same as the number of times (A — k) divides f(k), and the polynomial
f has degree n. So the total number of vectors #; is n. We have n linearly independent vectors in
R™, so we have a basis for R".

We have now explained all of our Lucky Facts, and shown that every symmetric matrix has a
basis of eigenvectors.



