
THE SPECTRAL THEOREM

Let A be an n× n symmetric real matrix. An amazing fact is that we can write A as
| | | |
~v1 ~v2 ~v2 · · · ~vn
| | | |



λ1

λ2
λ3

. . .

λn



− ~v1 −
− ~v2 −
− ~v3 −
− · · · −
− ~vn −


with ~v1, ~v2, . . . , ~vn orthonormal vectors.

Here is how we compute1 the λ’s and the ~v’s. The fact that this method works involves what
seems to be some amazing pieces of good fortune.

Step 1 Compute the characteristic polynomial det(A− kId).

Factor this polynomial as (λ1 − k)(λ2 − k) · · · (λn − k). The Fundamental Theorem of Algebra2

promises us that such a factorization is possible if we use complex numbers. However, it turns out
in our case that life is much better than this:

Lucky Fact 1: All the roots of f are real.

Step 2 For each eigenvalue λ, compute an orthonormal basis for Ker(A− λId).

Putting all these bases together gives us a list of vectors: ~v1, ~v2, . . . .

Lucky Fact 2: The geometric multiplicity of λ, meaning the dimension of this kernel, is equal
to the number of times λ occurs as a root of f .

Thus, the total number of vectors in our list is equal to the number of roots of f , which is n.

Lucky Fact 3: These vectors form an orthonormal basis of Rn.

In the rest of this note, we will explain why we got so lucky.

A key fact

We will use the following key fact twice below:

Key Fact: Suppose that ~u and ~v are eigenvectors of A, with

A~u = λ~u A~v = µ~v.

Suppose that λ 6= µ. Then ~u and ~v are orthogonal.

To see this, we compute ~uTA~v in two ways. We have

~uTA~v = ~uT (λ~v) = λ~uT~v.

1This is how to do the computation by hand. MATLAB uses a rather more sophisticated approach.
2The fundamental theorem of algebra is too hard for this course. The easiest exposition I know is at

http://www.math.binghamton.edu/loya/papers/LoyaFTA.pdf.



But, also, ~uTA~v = (~vTAT~u)T = (~vTA~u)T , where we have replaced AT by A because A is symmetric.
And (~vTA~u)T = (~vTµ~u)T = µ(~vT~u)T = µ(~uT~v). Putting it all together,

λ~uT~v = µ~uT~v.

Since λ 6= µ, we get ~uT~v = 0. In other words, the dot product ~u · ~v is 0 or, in still other words, ~u
and ~v are orthogonal.

We now start explaining the Lucky Facts.

Lucky Fact 1

Suppose that f had a complex root, λ = a + bi. Let the corresponding eigenvector be ~x + i~y,
with x and y each real vectors. So

A(~x+ i~y) = (a+ bi)(~x+ i~y).

Taking complex conjugates of everything, we also have

A(~x− i~y) = (a− bi)(~x− i~y).

So ~x− i~y is also an eigenvector, with eigenvalue a− bi.

Now, if λ is complex, then b 6= 0, and a + bi 6= a − bi. We can now use the Key Fact, with
~u = ~x + i~y and ~v = ~x − i~y. (You probably expected us to use the Key Fact for real vectors, but
there is nothing about our argument that needed the entries to be real.)

So we deduce that ~u · ~v = 0. Plugging in the formulas for ~u and ~v, that (~x+ i~y) · (~x− i~y) = 0.

But (~x+ i~y) · (~x− i~y) = ~x · ~x− i~x · ~y + i~y · ~x+ ~y · ~y = ~x · ~x+ ~y · ~y = |~x|2 + |~y|2.

There is no way this is zero. (Remember that ~x and ~y have real entries.) More precisely, the only
way it could be zero is if ~x = ~y = 0, but then ~x + i~y is 0 and is not an example of a nontrivial
eigenvector.

We started out supposing that f has a complex root, and reached the absurd conclusion that
|~x|2 + |~y|2 = 0. The resolution is that, in fact, f doesn’t have any complex roots, and all its roots
are real. (Here we are using the Fundamental Theorem of Algebra to know that there are n roots
total – real and complex.) Lucky Fact 1 explained!

Lucky Fact 2

Let λ be a root of f(k), so det(A− λId) = 0. Let r be the geometric multiplicity of λ, meaning
that there is an r dimensional space of solutions to the equation A~v = λ~v .

Let ~v1, ~v2, . . . , ~vr be an orthonormal basis for the space of solutions to A~v = λ~v. Find additional
vectors ~vr+1, . . . , ~vn so that ~v1, ~v2, . . . , ~vr, ~vr+1, . . .~vn is an orthonormal basis for Rn. For
r + 1 ≤ i ≤ n, we can write

A~vi =
n∑

j=1

cij~vj



for some coefficients cij . We can organize these equations into a matrix. For concreteness, we take
r = 2 and n = 5.

| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |



λ

λ
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

 = A ·


| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |


You may recognize this argument from the November 13 notes.

Let S =


| | | | |
~v1 ~v2 ~v3 ~v4 ~v5
| | | | |

 . So SAS−1 =


λ

λ
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

 .

But ~v1, ~v2, . . . , ~vn is an orthonormal basis, so S is orthogonal and S−1 = ST . So we have

STAS =


λ

λ
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

 .

Notice that (STAS)T = STATS = STAS, so the above matrix is symmetric. In particular, that
lower left block is entirely zero and we have

S−1AS =


λ

λ

C


for some symmetric (n− r)× (n− r) matrix C. As in the November 13 notes, we see that

det(A− k · Idn) = det




λ
λ

C

− k · Idn

 = det


λ− k

λ− k

C − k · Idn−r


= (λ− k)r det(C − k · Idn−r).

Our goal is to show that λ − k divides det(A − k · Idn) exactly r times. So we want to know
that λ − k does not divide det(C − kIdn−r). In other words, we want to know that λ is not an
eigenvalue of C.

Suppose, to the contrary that C~u = λ~u. Then
λ

λ

C


0

0
~u

 =

 0
0
λ~u

 .

So
(

0
0
~u

)
is another λ eigenvector for A, which should have been listed when we found the vi.



Lucky Fact 3

We need to explain two things: Why the ~vi are orthonormal, and why they are a basis.

If ~vi and ~vj both come from the same eigenvalue λ, then ~vi ·~vj = 0 because we chose an orthonor-
mal basis for the λ-eigenspace. Also, the ~vi all have length 1 because we chose an orthonormal
basis in this place.

If ~vi and ~vj come from different eigenvalues, then the Key Fact tells us that ~vi and ~vj are
perpendicular. So we also have perpendicularity between these vectors.

Since the ~vi are orthonormal, they are linearly independent. From Lucky Fact 2, the number of
~vi coming from each λ is the same as the number of times (λ− k) divides f(k), and the polynomial
f has degree n. So the total number of vectors ~vi is n. We have n linearly independent vectors in
Rn, so we have a basis for Rn.

We have now explained all of our Lucky Facts, and shown that every symmetric matrix has a
basis of eigenvectors.


