Inside the New GIL

David M. Beazley
http://www.dabeaz.com

January 14,2010
@chipy

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

What Happens at Chipy...

® ..gets people to go change Python

® [n June, 2009, | gave that "Mindblowing GIL"
presentation and said it would be cool for
someone to hack on the problem

® Python 3.2 has a brand new GIL (implemented
by Antoine Pitrou)

® Yay!

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

This Talk

® A very brief refresher on the old GIL
® An overview of the new one

® |f you didn't see the previous talk, go to

http://www.dabeaz.com/python/GIL.pdf

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Disclaimer

® All of this is pretty bleeding edge

® |'m still working on a bunch of updated GIL

benchmarks and other results in preparation
for PyCON"2010

® So, this talk is rather preliminary... a preview
perhaps.

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Memory Refresh

® Python has the Global Interpreter Lock (GIL)

® [t prevents more than one thread from running
simultaneously in the interpreter

® On multicore, it has diabolical behavior

® Not only kills the performance of Python, but
affects the performance of the whole machine
due to all sorts of crazy system thrashing.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 5

A Performance Test

® Consider this CPU-bound function

def count(n):
while n > 0:
n-=1

® Sequential Execution:

count(100000000)
count (100000000)

® Threaded execution

tl = Thread(target=count,args=(100000000,))
tl.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 6

Bizarre Results

® Performance comparison (Dual-Core 2Ghz

Macbook, OS-X 10.5.6)

Sequential :24.6s
Threaded

:45.5s (1.8X slower!)

® [f you disable one of the CPU cores...

Threaded :38.0s

® [nsanely horrible performance. Better
performance with fewer CPU cores? It

makes no sense.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Scheduling

® The old GIL was entirely based on interpreter
ticks and repeated signaling on a cond. var.

N N N
5\0(/ (\S\Q’C (\5\00
100 ticks 100 ticks
Thread | > |:| > |:|—> - — |:|| SUSPENDED
signal signal
) A Thread
Operating Context
System Switch :)
. ; { signal i signal
signal ‘-.; i i
Thread 2 | SUSPENDED iﬂ =|:|
& &
o) o)

® All of that signaling is what kills performance

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

_l_run
Release GIL

Release GIL
lrun

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread | (CPU 1)

ACqUire GlL—""

Acquire GIL——"""

Multicore GIL Battle

® With multiple cores, CPU-bound threads get
scheduled simultaneously (on different
processors) and then fight it out

Thread 2 (CPU 2)

signal
>_Wake
——Acquire GIL (fails)

... Woake
——Acquire GIL (fails)

® The waiting thread (T2) may make 100s of
failed GIL acquisitions before any success

GIL Battle (In Pictures)

I:‘ Idle D Running . Failed GIL Acquire
2 CPU-bound threads .
| CPU 228000 ticks
thread |
thread 2|
2 CPU-bound threads .
2 CPUs 66700 ticks
thread |
thread 2 1

Commentary: Even hard-core Python developers
had no idea that this was going on with multicore

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

2- 10

The New GIL

® First things first: The new GIL does not
eliminate the GIL--it makes it better

® New implementation aims to provide more
consistent runtime behavior of threads

® Namely, a significant reduction in all of that
thrashing and extra signaling overhead

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

New GIL Explained

® The new GIL is still based on condition
variables and signaling

® However, it's put together in an entirely
different way

® Let's take a look

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

- 12

Interpreter Ticks - Gone

® Past versions of Python kept track of
interpreter instructions and "ticks"

® Once a certain number of ticks had executed,
a thread-switch signal was sent

® This is gone. There are no more ticks.
® sys.setcheckinterval() is gone too

® New GIL is time-based (more in a second)

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

- 13

New Thread Switching

® Decision to thread switch tied to a global var

/* Python/ceval.c */

static volatile int gil drop request = 0;

® A thread runs forever in the interpreter until
the value of this variable gets set to |

® At which point, the thread must drop the GIL

® Big question: How does that happen?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

- 14

New GIL lllustrated

® |n the beginning, there is one thread

running

v

Thread |

® |t runs forever
® Never releases the GIL
® Never sends any signals

® |ife is good

2- 15

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL lllustrated

® Now, a second thread makes an appearance...

running

v

Thread |

Thread 2 | SUSPENDED |

® |t is suspended because it doesn't have the GIL

® Somehow, it has to get it from Thread |

2- 16

Copyright (C) 2010, David Beazley, http://www.dabeaz.c

New GIL lllustrated

® Second thread does a timed cv_wait on GIL

running

v

Thread |

Thread 2 | SUSPENDED |

cv_wait(gil, TIMEOUT)

® The idea :Thread 2 will wait to see if the GIL
gets released voluntarily by Thread | (e.g., if
Thread | performs I/O or goes to sleep)

2- 17

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL lllustrated

® Voluntary GIL release

running I/O wait

Thread | >|

signal %

¥

Thread 2 | SUSPENDED |

running

v

cv_wait(gil, TIMEOUT)

® This is the easy case. Second thread gets
sighaled when Thread | sleeps. It runs

2- 18

Copyright (C) 2010, David Beazley, http://www.dabeaz.c

New GIL lllustrated

® Timeout causes gil_drop_request to be set

running

Thread | >

gil_drop_request = |
A
TIMEOUT
Thread 2 | SUSPENDED |

cv_wait(gil, TIMEOUT) v_wait(gil, TIMEOUT)

® After setting gil_drop_request, Thread 2
repeats its wait request on the GIL

2- 19

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL lllustrated

® Thread | is forced to give up the GIL

running
Thread | >
gil_drop_request = | "":E signal
IS
TIMEOUT: % running
Thread 2 | SUSPENDED I >
cv_wait(gil, TIMEOUT) v_wait(gil, TIMEOUT)

® [t will finish its current instruction, drop the GIL
and signal that it has released it

2- 20

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL lllustrated

® On GIL release, Thread | waits for a signal

cv_wait(gotgil)
A

running !
Thread | > [WAIT
i 2
gil_drop_request = | "‘za signal:,:":
A ‘._A“. ::.:
TIMEOUT: % ¥ running
Thread 2 | SUSPENDED I\ >
cv_wait(gil, TIMEOUT) v_wait(gil, TIMEOUT)

® Signal indicates that the other thread
successfully got the GIL and is now running

® This eliminates the "GIL Battle"

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 2 I

New GIL lllustrated

® The process now repeats itself for Thread |

cv_wait(gotgil) cv_wait(gil, TIMEOUT)
running * g

Thread | =__‘|:WAIT |J SUSPENDED |
gil_drop_request = | ZZZE-Signa!:.:’:::gil_drop_request =0
mveout! Y S running
Thread 2 | SUSPENDED I >
cv_wait(éil,TIMEOUT) iv_wait(giI,TIMEOUT)

® So, the sequence you see above happens over
and over again as CPU-bound threads execute

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 22

Default Timeout

® Default timeout for thread switching is 5
milliseconds (0.005s)

® By comparison, default context-switching
interval on most systems is 10 milliseconds

® Adjust with sys.setswitchinterval()

2- 23

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Multiple Thread Handling

® On GIL timeout, a thread only sets
gil_drop_request=1 if no thread switches of
any kind have occurred in that period

® |t's subtle, but if there are a lot of threads
competing, gil _drop_request only gets set
once per "time interval"

® You want this

2- 24

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Multiple Threads

running

Thread | > SUSPENDED |

gil_drop_request = |
A

TlMEOUT; running

Thread 2 | SUSPENDED | »
T : gil_drop_request = |
TIMEOUT TIMEOUT‘
Thread 3 | SUSPENDED f][SUSPENDED
. JIMEOUT .+
Thread 4 | SUSPENDER ...]| SUSPENDED |
These timeouts do not First thread to timeout
cause the just started after Thread 2 starts
Thread 2 to drop the GIL makes the drop request
Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 25

Multiple Thread Handling

® The thread that makes the request to drop
the GIL is not necessarily the one that runs

® This is determined largely by OS priorities

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 26

Multiple Threads

running
Thread | > SUSPENDED |

gil_drop_request = I
A

TIMEOUT: |

Thread 2 | SUSPENDED || SUSPENDED |
signal
v running
Thread 3 | SUSPENDED | >
Thread 4 [SUSPENDED I[SUSPENDED |

® Here,Thread 2 made Thread | drop the GIL,
but Thread 3 starts running (up to OYS)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2' 27

Does it Work!?

® Yes,it's better (4-core MacPro, OS-X 10.6.2)

Sequential :23.5s
Threaded :24.0 (2 threads)

® Still working on some other tests (in
preparation for PyCON), but it seems to be

much better behaved--even if creating 100s of
CPU-bound threads

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

2- 28

Interesting Features

® The new GIL allows a thread to run for 5ms
regardless of other threads or |/O priorities

® So,a CPU-bound thread might block an 1/O
bound thread for that amount of time

® This is probably what you want to avoid
excessive thrashing/context switching

® Be aware that it might impact response time
(so you may want to adjust the interval)

2-29

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Interesting Features

® | ong running calculations and C/C++
extensions may block thread switching

® Thread switching is not preemptive

® So, if an operation in an C extension takes 5
seconds to run, you will have to wait that long
before the GIL gets released (same was true

of old GIL)

2- 30

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Final Comments

® New GIL probably needs further study

® Seems good. Need to investigate behavior
under heavy I/O processing

® Again, only implemented in Python 3.2 which
is only available via svn checkout

® Backport to Python 2.7 (Don't know)

2- 31

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

